Select Menu

Random Posts

Powered by Blogger.

Nibiru

NATURAL DISASTERS

EARTH CHANGES

EARTHQUAKES

SECRET

Planet x

Botton

» »Unlabelled » Black Hole and Red Dwarf Orbit Each Other Once Every 2.4 Hours

Black Hole and Red Dwarf Orbit Each Other Once Every 2.4 Hours

March 19, 2013 by Staff
Using data from ground observations and space telescopes, researchers have identified a red dwarf and black hole that orbit each other once every 2.4 hours, beating the previous record.
ESA’s XMM-Newton space telescope has helped to identify a star and a black hole that orbit each other at the dizzying rate of once every 2.4 hours, smashing the previous record by nearly an hour. The black hole in this compact pairing, known as MAXI J1659-152, is at least three times more massive than the Sun, while its red dwarf companion star has a mass only 20% that of the Sun. The pair is separated by roughly a million kilometers. The duo were discovered on 25 September 2010 by NASA’s Swift space telescope and were initially thought to be a gamma-ray burst. Later that day, Japan’s MAXI telescope on the International Space Station found a bright X-ray source at the same place. More observations from ground and space telescopes, including XMM-Newton, revealed that the X-rays come from a black hole feeding off material ripped from a tiny companion. Several regularly-spaced dips in the emission were seen in an uninterrupted 14.5 hour observation with XMM-Newton, caused by the uneven rim of the black hole’s accretion disc briefly obscuring the X-rays as the system rotates, its disc almost edge-on along XMM-Newton’s line of sight. From these dips, an orbital period of just 2.4 hours was measured, setting a new record for black hole X-ray binary systems. The previous record-holder, Swift J1753.5–0127, has a period of 3.2 hours. The black hole and the star orbit their common center of mass. Because the star is the lighter object, it lies further from this point and has to travel around its larger orbit at a breakneck speed of two million kilometers per hour – it is the fastest moving star ever seen in an X-ray binary system. On the other hand, the black hole orbits at ‘only’ 150 000 km/h. “The companion star revolves around the common center of mass at a dizzying rate, almost 20 times faster than Earth orbits the Sun. You really wouldn’t like to be on such a merry-go-round in this Galactic fair!” says lead author Erik Kuulkers of ESA’s European Space Astronomy Center in Spain. His team also saw that they lie high above the Galactic plane, out of the main disc of our spiral Galaxy, an unusual characteristic shared only by two other black-hole binary systems, including Swift J1753.5–0127. “These high galactic latitude locations and short orbital periods are signatures of a potential new class of binary system, objects that may have been kicked out of the Galactic plane during the explosive formation of the black hole itself,” says Dr Kuulkers. Returning to MAXI J1659−152, the quick response of XMM-Newton was key in being able to measure the remarkably short orbital period of the system. “Observations started at tea-time, just five hours after we received the request to begin taking measurements, and continued until breakfast the next day. Without this rapid response it would not have been possible to discover the fastest rotation yet known for any binary system with a black hole,” adds Norbert Schartel, ESA’s XMM-Newton project scientist. Publication: E. Kuulkers, et al., “MAXI J1659−152: the shortest orbital period black-hole transient in outburst,” Astronomy & Astrophysics, 552, A32 (2013); doi:10.1051/0004-6361/201219447 PDF Copy of the Study: MAXI J1659-152: The shortest orbital period black-hole transient in outburst Source: European Space Agency Image: European Space Agency

 

About The Real Signs of Time

Think for yourself” is probably the most important advice an educated person can hear. Unfortunately, its meaning has become ambiguous.
«
Next
Newer Post
»
Previous
Older Post

No comments

Leave a Reply